- Sattelfläche
-
Sattelfläche,Differenzialgeometrie: eine Fläche mit mindestens einem Sattelpunkt.
Universal-Lexikon. 2012.
Universal-Lexikon. 2012.
Sattelfläche — Als Sattelfläche wird in der Geometrie eine Fläche bezeichnet, die in den beiden Hauptrichtungen entgegengesetzt – d. h. antiklastisch – gekrümmt ist. Ihr Krümmungsmaß ist negativ. Ihr Name kommt vom Pferde Sattel bzw. dem Sattel im Gelände … Deutsch Wikipedia
Fläche des Dreiecks — Ein Dreieck mit üblichen Bezeichnungen und mit Umkreis, Inkreis und Teilen eines Ankreises Ein Dreieck ist ein Polygon und eine geometrische Figur. Es handelt sich innerhalb der euklidischen Geometrie um die einfachste Figur in der Ebene, die von … Deutsch Wikipedia
Bergsattel — Der Sattel zwischen je 2 Bergen Unter dem Sattel zwischen zwei Bergen versteht man die Umgebung des höchstgelegenen Punktes des (optimalen) Passes zwischen beiden Massiven, d. h., der tiefstgelegenen Route, über die man zwischen beiden… … Deutsch Wikipedia
Dreieck — mit seinen Ecken, Seiten und Winkeln sowie Umkreis, Inkreis und Teil eines Ankreises in der üblichen Form beschriftet Ein Dreieck (veraltet auch Triangel[1], lateinisch: triangulum) ist ein Polygon und eine geometrische Figur. Es handelt sich… … Deutsch Wikipedia
Nicht-euklidische Geometrie — In der hyperbolischen, euklidischen und elliptischen Geometrie stehen zwei Geraden, die mit einer Normalen verbunden sind, unterschiedlich zu einander. Nichteuklidische Geometrien unterscheiden sich von der euklidischen Geometrie dadurch, dass in … Deutsch Wikipedia
Nichteuklidisch — In der hyperbolischen, euklidischen und elliptischen Geometrie stehen zwei Geraden, die mit einer Normalen verbunden sind, unterschiedlich zu einander. Nichteuklidische Geometrien unterscheiden sich von der euklidischen Geometrie dadurch, dass in … Deutsch Wikipedia
Gausskrümmung — In der Theorie der Flächen im dreidimensionalen Raum ( ), einem Gebiet der Differentialgeometrie, ist die gaußsche Krümmung (das gaußsche Krümmungsmaß), benannt nach dem Mathematiker Carl Friedrich Gauß, der wichtigste Krümmungsbegriff neben der… … Deutsch Wikipedia
Gauß-Krümmung — In der Theorie der Flächen im dreidimensionalen Raum ( ), einem Gebiet der Differentialgeometrie, ist die gaußsche Krümmung (das gaußsche Krümmungsmaß), benannt nach dem Mathematiker Carl Friedrich Gauß, der wichtigste Krümmungsbegriff neben der… … Deutsch Wikipedia
Gaußkrümmung — In der Theorie der Flächen im dreidimensionalen Raum ( ), einem Gebiet der Differentialgeometrie, ist die gaußsche Krümmung (das gaußsche Krümmungsmaß), benannt nach dem Mathematiker Carl Friedrich Gauß, der wichtigste Krümmungsbegriff neben der… … Deutsch Wikipedia
Hyperbolisches Paraboloid — Hyperbolisches Paraboloid … Deutsch Wikipedia